Computer Science 687 Spring 2006

Reinforcement Learning Andrew Barto

Department of Computer Science University of Massachusetts — Amherst

Lecture 1: Introduction

Artificial Intelligence

Psychology

Control Theory and Operations Research

Reinforcement Learning (RL)

Neuroscience

Artificial Neural Networks

What is Reinforcement Learning?

- Learning from interaction
- Goal-oriented learning
- Learning about, from, and while interacting with an external environment
- Learning what to do—how to map situations to actions
 —so as to maximize a numerical reward signal

Supervised Learning

Training Info = desired (target) outputs

Error = (target output - actual output)

Reinforcement Learning

Training Info = evaluations ("rewards" / "penalties")

Objective: get as much reward as possible

Key Features of RL

- Learner is not told which actions to take
- Trial-and-Error search
- Possibility of delayed reward
 - Sacrifice short-term gains for greater long-term gains
- The need to explore and exploit.
- Considers the whole problem of a goal-directed agent interacting with an uncertain environment

Complete Agent

- Temporally situated
- Continual learning and planning
- Object is to *affect* the environment
- Environment is stochastic and uncertain

A Less-Misleading Agent View

Elements of RL

- Policy: what to do
- Reward: what is good
- Value: what is good because it predicts reward
- Model: what follows what

An Extended Example: Tic-Tac-Toe

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

State	V(s) – estimated probability of winning			
# :	.5 :	?	2. Now play lots	
<u>x x x</u> <u>x</u> <u>0 1 0</u>	1	win	our moves, look	
X O X O O	: 0 :	loss	current sta	
0 X 0 0 X X X 0 0	0	draw	*	

2. Now play lots of games. To pick our moves, look ahead one step:

Just pick the next state with the highest estimated prob. of winning — the largest V(s); a greedy move.

But 10% of the time pick a move at random; an exploratory move.

RL Learning Rule for Tic-Tac-Toe

We increment each V(s) toward V(s') – a **backup**:

$$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$$
a small positive fraction, e.g., $\alpha = .1$
the *step - size parameter*

How can we improve this T.T.T. player?

- Take advantage of symmetries
 - representation/generalization
 - How might this backfire?
- Do we need "random" moves? Why?
 - Do we always need a full 10%?
- Can we learn from "random" moves?
- Can we learn offline?
 - Pre-training from self play?
 - Using learned models of opponent?

• . . .

e.g. Generalization

How is Tic-Tac-Toe Too Easy?

- Finite, small number of states
- One-step look-ahead is always possible
- State completely observable

• . . .

Some Notable RL Applications

- TD-Gammon: Tesauro
 - world's best backgammon program
- Elevator Control: Crites & Barto
 - high performance down-peak elevator controller
- Inventory Management: Van Roy, Bertsekas, Lee & Tsitsiklis
 - 10-15% improvement over industry standard methods
- Dynamic Channel Assignment: Singh & Bertsekas, Nie & Haykin
 - high performance assignment of radio channels to mobile telephone calls
- More ...

TD-Gammon

Tesauro, 1992-1995

Action selection by 2–3 ply search

Start with a random network

Play very many games against self

Learn a value function from this simulated experience

This produces arguably the best player in the world

Elevator Dispatching

Crites and Barto, 1996

10 floors, 4 elevator cars

STATES: button states; positions, directions, and motion states of cars; passengers in cars & in halls

ACTIONS: stop at, or go by, next floor

<u>REWARDS</u>: roughly, -1 per time step for each person waiting

Conservatively about 10²² states

Performance Comparison

Autonomous Helicopter Flight

A. Ng, Stanford, H. Kim, M. Jordan, S. Sastry, Berkeley

Quadrupedal Locomotion

Nate Kohl & Peter Stone, Univ of Texas at Austin

All training done with physical robots: Sony Aibo ERS-210A

Before learning

After 1000 trials, or about 3 hours

Learning Control for Dynamically Stable Walking Robots

Russ Tedrake, Teresa Zhang, H. Sebastian Seung, MIT

http://hebb.mit.edu/~russt/robots

Grasp Control

R. Platt, A. Fagg, R. Grupen, Univ. of Mass Amherst

Some RL History

Trial-and-Error
learning

Temporal-difference learning

Optimal control, value functions

Thorndike (Ψ) 1911

Secondary reinforcement (Ψ)

Hamilton (Physics) 1800s

Minsky

Samuel

Holland

Bellman/Howard (OR)

Shannon

Klopf

Witten

Werbos

Barto et al.

Sutton

Watkins

MENACE (Michie 1961) "Matchbox Educable Noughts and Crosses Engine"

The Book

- Part I: The Problem
 - Introduction
 - Evaluative Feedback
 - The Reinforcement Learning Problem
- Part II: Elementary Solution Methods
 - Dynamic Programming
 - Monte Carlo Methods
 - Temporal Difference Learning
- Part III: A Unified View
 - Eligibility Traces
 - Generalization and Function Approximation
 - Planning and Learning
 - Dimensions of Reinforcement Learning
 - Case Studies

The Course

- We will follow the book, then read a collection of more recent papers on later developments
- Read the reading assignment for the each class before that class!
- Written home-works: many of the non-programming assignments in each chapter, plus others.
- Programming exercises: require you to implement many of the algorithms discussed in the book. Details to come...
- Closed-book, in-class midterm; closed-book 2-hr final
- Grading: 30% written home-works; 25% programming exercises; 25% final; 20% midterm
- See the web for more details: http://www-anw.cs.umass.edu/~barto/courses/cs687/

Next Class

- Introduction continued and some case studies
- Read Chapters 1 & 2
- Do exercises 1.1 1.5: to hand in Tues 2/7